Effect Of Hesperidin On Serum Glucose, HbA1c And Oxidative Stress In Myocardial Tissue In Experimentally Induced Myocardial Infarction In Diabetic Rats

Kakadiya Jagdish*, Shah Mehul, Shah Nehal
Pharmacology Department, Dharaj Degree Pharmacy College, Petlad-Khambhat Road, Dharaj, Anand-388430, Gujarat, INDIA.
* Address for correspondence: Mr. Jagdish L. Kakadiya, Pharmacology department, Dharaj Degree Pharmacy College, Dharaj, Anand-388430, Gujarat, India. Tel: +919825882522. jagdishkakadiya@yahoo.co.in

ABSTRACT
Present study was designed to evaluate in vitro antioxidant activity in heart and serum Glucose, HbA1c of Hesperidin on isoproterenol induced myocardial infarction in normal and diabetic in rats. Hesperidin (100 mg/kg, p.o) was administered for 28 days in rats injected with single dose of Streptozotocin (65 mg/kg, i.p, STZ) and nicotinamide (110 mg/kg, i.p, NIC) and after isoproterenol (200mg/kg, s.c., ISO) induced myocardial infarction in diabetic rats on 29th and 30th day. At the end of experimental period (i.e. on the day 31) heart tissue sample of each rat was collected and antioxidative parameter carried out for further estimations. Administration of STZ–NIC in rats showed a significant (P<0.001) increased in the levels of serum glucose, glycosylated heamoglobin (HbA1c). At the end of experimental period the level of malondialdehyde formation/ lipid peroxidation (LPO) and nitrite level in heart tissue was significantly increased. Whereas, the activity of biomarkers of oxidative stress such as reduced glutathione (GSH), catalase (CAT) and superoxide dismutase (SOD) were found to be decreased significantly compared to control rats. Treatment with Hesperidin significantly restored GSH level, SOD as well as catalase activity and reduced lipid peroxidation and nitrite in compared to diabetic control group. This study concluded that HES at 10 mg/kg may show reduced oxidative stress in heart on isoproterenol induced myocardial infarction in type 2 diabetic rats.

Keywords: Hesperidin, antioxidant, isoproterenol, Type 2 diabetic.
Editor: Dr. Srisailam Keshetti, Phcog.Net
Copyright: © 2010 Phcog.net
*Author for Correspondence: jagdishkakadiya@yahoo.co.in

INTRODUCTION
Three major metabolic abnormalities contribute to the development of hyperglycemia in Type 2 diabetes mellitus such as impaired insulin secretion in response to glucose, increased hepatic glucose production and decreased insulin-stimulated glucose uptake in peripheral tissues. The latter two abnormalities are primarily due to insulin resistance (1, 2). Type 2 Diabetes Mellitus is mainly characterized by the development of increased morbidity and mortality for cardiovascular disease. Cardiovascular disease is one of the leading causes of death in the western world and diabetes mellitus has been identified as a primary risk factor (3), due to which there is alteration in vascular responsiveness to several vasoconstrictors and vasodilators (4).

Oxidative stress has been associated with the pathogenesis of chronic diabetic complications including cardiomyopathy. The ability of antioxidants to inhibit these injuries has raised the possibility of newer therapeutic treatment for diabetic heart diseases.

Hesperidin (HES) is an abundant and inexpensive byproduct of Citrus cultivation and isolated from the ordinary orange Citrus aurantium and other species of the genus Citrus (family: Rutaceae). It is reported to have anti-allergic, radio protective, immunomodulator, anti-hypertensive and anti-oxidant properties. When hesperidin is administered orally, it is hydrolyzed by intestinal micro flora to yield a major active metabolite hesperidin.

So far in vitro antioxidant activity in heart of effect of Hesperidin on isoproterenol induced myocardial infarction in normal and diabetic in rats has not been
studied. Hence, the purpose of the present study was to instigate the effect of Hesperidin treatment on in vitro antioxidant heart tissue parameter alteration in Isoproterenol induced myocardial infarction in normal and type 2 diabetic rats.

MATERIAL AND METHODS

Drugs and Chemicals

Hesperidin was obtained from ACROS Lab, US. STZ and NIC were obtained from SIGMA, St. Louis, MO, USA. All other chemicals and reagents used in the study were of analytical grade.

Experimental Animals

All experiments and protocols described in present study were approved by the Institutional Animal Ethics Committee (IAEC) of Dharmaj Degree Pharmacy College, Anand. Sprague Dawley rats (210 ± 15 g) were housed in-group of 3 animals per cage and maintained under standardized laboratory conditions (12-h light/dark cycle, 24°C) and provided free access to palleted CHAKKAN diet (Nav Maharashtra Oil Mills Pvt., Pune) and purified drinking water ad libitum. The animal experiment was approved by Animal Ethical Committee of the Institute (1163/a/08/CPCSEA).

Experimental Induction of Type 2 Diabetes in Rats

Type 2 Diabetes was induced in rats by a single intraperitoneal (i.p) injection of Streptozotocin (65 mg/kg, STZ) in overnight fasting rats followed by the i.p administration of Nicotinamide (110 mg/kg, NIC) after 15 minutes. STZ was dissolved in citrate buffer (pH 4.5) and NIC was dissolved in normal saline. After 7 days following STZ and NIC administration, blood was collected from retro-orbital puncture and serum samples were analyzed for blood glucose (5). Animals showing fasting blood glucose higher than 300 mg/dL were considered as diabetic and used for the further study. Hesperidin (100 mg/kg, p.o) was administered for 28 days in diabetic rats and afterisoproterenol induced myocardial infarction in rats on 29th and 30th day.

At the end of experimental period (i.e. on the day 31) heart tissue sample of each rat was collected and carried out for further estimations.

Experimental Protocol

Animals were divided into following groups, each group containing 6 animals.

Group 1: Non-diabetic control [0.5 % Sodium CMC (1 ml/kg/day, p.o) as vehicle for 4 weeks and (ND-CON)] and normal saline subcutaneously on 29th and 30th day.

Group 2: Non-diabetic control treated with HES (100 mg/kg/day, p.o) as a suspension [0.5 % Sodium CMC for 4 weeks (ND-HES)] and normal saline subcutaneously on 29th and 30th day.

Group 3: STZ-NIC diabetic control [0.5 % Sodium CMC (1 ml/kg/day, p.o) as vehicle for 4 weeks (D-CON)] and received ISO (200 mg/kg, s.c.) on 29th and 30th day in normal saline.

Group 4: STZ-NIC diabetic rats treated with HES (100 mg/kg/day, p.o) as a suspension [0.5 % Sodium CMC for 4 weeks (D-HES)] and received ISO (200 mg/kg, s.c.) on 29th and 30th day in normal saline.

BIOCHEMICAL ESTIMATIONS

Characterization of Type 2 Diabetes Model

Type 2 diabetes was confirmed by measuring fasting serum glucose using standard diagnostic kit (SPAN diagnostics Pvt., India) and the degree of uncontrolled diabetic state was confirmed by measuring HbA1c (Ion Exchange Resin method). After 4 weeks, diabetes was confirmed by measuring glucose and HbA1c as mentioned above.

Estimation of biomarkers of Oxidative stress

The excised liver was then weighed and homogenized in chilled Tris buffer (10 mM, pH 7.4) at a concentration of 10% (w/v). The homogenates were centrifuged at 10,000 × g at 0 °C for 20 min using Remi C-24 high speed cooling centrifuge. The clear supernatant was used for the assay of following antioxidant parameters. The levels of Lipid peroxidation (LPO) formation and the activities of endogenous antioxidant enzymes such as catalase (CAT), reduced glutathione (GSH) and superoxide dismutase (SOD) were estimated by the method of Slater and Sawyer (6) Hugo Aebi as given by Hugo (7) Moron et al (8) and Mishra and Fridovich (9). The clear supernatant was used for estimation of nitrite level (10).

Statistical Analysis

All of the data are expressed as mean ± SEM. Statistical significance between more than two groups was tested using one-way ANOVA followed by the Bonferroni multiple comparisons test or unpaired two-tailed student’s t-test as appropriate using a computer-based
fitting program (Prism, Graphpad 5). Differences were considered to be statistically significant when \(p < 0.05 \).

RESULTS

Characterization of Type 2 Diabetes

Single intraperitoneal (i.p) injection of Streptozotocin (65 mg/kg) followed by i.p administration of Nicotinamide (110 mg/kg) to rats produced severe hyperglycemia and increased HbA1c in 70 to 80% of the animals (Figure 1). The levels of glucose and HbA1c was significant \((P<0.05) \) decreased after treatment with HES (100 mg/kg, p.o) alone and combination with HES (100 mg/kg, p.o) as compared to DB-CON rats.

Effect of HES on myocardial tissue parameter

There was a significantly \((P<0.001) \) decrease in GSH level, \((P<0.001) \) along with SOD and catalase activity \((P<0.01) \) and increased lipid peroxidation \((P<0.001) \) after myocardial infarction in STZ-NIC group (fig. 2). Treatment with Hesperidin significantly \((P<0.05) \) restored GSH level, SOD as well as catalase activity and reduced lipid peroxidation significantly \((P<0.05) \) in D-HES group compared to D-CON group (fig. 2). There was a significant \((P < 0.01) \) increase in cardiac nitrite level in D-CON group as compared to ND-CON group after myocardial infarction. Hesperidin treatment in diabetic rats (D-HES)

![Figure 1](image-url)
Figure 1: Effect of Hesperidin (100 mg/kg/day, p.o) on changes in serum glucose and HbA1c level in normal and STZ-NIC induced diabetic rats. Values are expressed as mean ± SEM for six animals in the group. ***\(P<0.001 \), *\(P<0.05 \) considered statistically significant as compared to respective Control group.
Effect Of Hesperidin On Serum Glucose, HBA1c And Oxidative Stress In Myocardial Tissue

DISCUSSION

The present study was undertaken with the objective of exploring evaluate in vitro antioxidant activity in heart of Hesperidin on isoproterenol induced myocardial infarction in normal and diabetic in rats. Recent studies have suggested that prevalence of type 2 diabetes mellitus (T2DM) is rapidly increasing. T2DM is mainly characterized by the development of increased morbidity and mortality for cardiovascular disease (CVD) (11), so that it has been suggested that diabetes may be considered a cardiovascular disease (12). However, CVD risk is elevated long before the development of diabetes (13).

The release of ROS in the early phase of infarction, in combination with the ischemia induced decrease in antioxidant activity, renders the myocardium vulnerable. Previous studies proved that, ROS produced during myocardial infarction could trigger myocyte apoptosis by activating MAPK and produces DNA damage by activation of the nuclear enzyme poly (ADP ribose) polymerase, which consumes cellular Nicotinamide dinucleotide and adenosine triphosphate.

In the present study, an increase in the levels of serum glucose and HbA1c in STZ-NIC treated rats confirmed the induction of diabetes mellitus. Significant decrease was observed in the glucose and HbA1c level in diabetic rats after treatment with HES (100 mg/kg) when compared with diabetic rats (D-CON) at the end of experimental period.

Moreover, the levels of endogenous antioxidant (SOD, CAT and GSH) were reduced and lipid peroxidation increased in D-CON group showing increased oxidative stress. Similar results showing increased oxidative stress (increased lipid peroxidation and reduced SOD, CAT and GSH) have been reported in previous studies in STZ induced diabetes modal (14). The antioxidant

Figure 2: Effect of Hesperidin (100 mg/kg/day, p.o) on changes in GSH (A), SOD (B), MDA(C) and CAT (D) level after completion of myocardial infarction in normal and STZ-NIC induced diabetic rats. Values are expressed as mean ± SEM for six animals in the group. *P<0.05, **P<0.01, ***P<0.001, considered statistically significant as compared to respective Control group.

Figure 3: Effect of Hesperidin (100 mg/kg/day, p.o) on myocardial changes in Nitrite level after completion of myocardial infarction in normal and STZ-NIC induced diabetic rats. Values are expressed as mean ± SEM for six animals in the group. *P<0.05, **P<0.01, considered statistically significant as compared to respective Control group.

significantly (P < 0.05) reduced nitrite level in heart as compared to D-CON group (Fig. 3).
enzymes were restored significantly by HES treatment in STZ diabetic rats. HES at 100mg/kg may show improve antioxidative stress in heart experimentally induced myocardial infarction in type 2 diabetic rats.

Myocardial infarction causes further increase in oxidative stress and reduction in nitric oxide availability due to endothelial dysfunction. The destruction of nitric oxide is much prominent in STZ-NIC diabetic rats which is due to increase in ROS formation. Nitric oxide is rapidly inactivated by O$_2^-$ and it has been reported that an enhanced formation of O$_2^-$ radical may be involved in the accelerated break down of nitric oxide (15, 16). HES treatment reduces the nitrosative stress which is evident from myocardial nitrite level reduction. Thus it may be one of the reasons for the cardioprotective effect of HES against myocardial infarction.

There may be several mechanisms for cardioprotection by Hesperidin against Myocardial infarction. It may be due to reduction in hyperglycemia induced deleterious effects, reduction in NO destruction, utilization of glucose and restoration of endogenous antioxidants in STZ-NIC diabetic rats. Administration of STZ-NIC caused decrease in SOD, CAT, and GSH but increase in MDA. Treatment with Hesperidin (100mg/kg, p.o) could improve result them. This study concluded that HES at 100 mg/kg may show reduced oxidative stress in heart and improve glucose and HbA1c on isoproterenol induced myocardial infarction in type 2 diabetic rats.

ACKNOWLEDGEMENT

The authors would like to thank the principal of Dharmaj Degree Pharmacy College of Pharmacy for providing facilities for work.

REFERENCES:

